Open Distance Pattern Coloring of Certain Classes of Graphs

P T Marykutty K A Germina

Abstract

Let G be a connected graph with diameter $d_{o}(G), \quad X=\{1,2,3, \ldots, d(G)\}$ be a non-empty set of colors of cardinality $d(G)$, and let $\phi \neq M \subseteq V(G)$. Let $f_{M}{ }^{\circ}$ be an assignment of subsets of X to the vertices of G such that $f_{M}{ }^{o}(u)=\{d(u, v), v \in M, u \neq \bar{v}\}$, where $\mathrm{d}(\mathrm{u}, \mathrm{v})$ is the distance between u and v . We call $f_{M}{ }^{o}$ an M-open distance pattern coloring of G if no two adjacent vertices have same $f_{M}{ }^{\circ}$ and if such an M exists for a graph G , then G is called an open distance pattern colorable (odpc) graph; the minimum cardinality of such an M if it exists, is the open distance pattern coloring number of G denoted by $\eta_{M}(G)$. .In this paper, we study open distance pattern coloring of certain classes of graphs.

Index Terms - distance pattern coloring, open distance pattern of vertices, coloring, bipartite graphs, chain graphs, triangular snake, quadrilateral snake,

Mathematics Subject Classification: 05CXX

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [10] and for more about graph labeling, we refer to [12]. Unless mentioned otherwise, all graphs considered here are simple, finite and connected. Let G be a (p, q) graph and let X, Y and Z be non-empty sets and $2^{X}, 2^{Y}$ and 2^{Z} be their power sets. Then, the functions $f: V(G) \rightarrow 2^{X}$ and $\left.f: E(G) \rightarrow 2^{Y} \quad f V \mathbb{G} \cup E G\right) \rightarrow 2^{Z}$ are called the set assignments of vertices, edges and elements of G respectively. By a set-assignment of a graph, we mean any one of them. A set-assignment $f: V(G) \rightarrow 2^{X} \quad$ is called a setlabeling or a set-valuation if it is injective. A proper coloring of a graph G is a function from the vertices of G to a set of colors such that no two adjacent vertices have the same color. The chromatic number of a graph G is the minimum number of colors required in its proper coloring. Graph coloring has been used as a model in many practical problems and has played a vital role in the development of graph theory. Using the concepts of graph coloring, distances in graphs and set-labeling of graphs, we defined the following in [7].

[^0]22.Definition.1.1 [6] Given a connected graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ of diameter $d(G), \phi \neq M \subseteq V(G)$. Let, $X=\{1,2,3, \ldots, d(G)\}$ be nonempty set of colors of G with cardinality $\mathrm{d}(\mathrm{G})$. Let be $f_{M}{ }^{\circ}$ an assignment of subsets of X to the vertices of G such that $f_{M}{ }^{\circ}(u)=\{d(u, v), v \in M, u \neq v\}$, where $\mathrm{d}(u, v)$ is the usual distance between u and v . We call $f_{M}{ }^{\circ}$ an M-open distance pattern coloring of G, if no two adjacent vertices have same $f_{M}{ }^{\circ}$ and if such an M exists for a graph G , then G is called an open distance pattern colorable graph. An open distance pattern colorable graph is usually written in short as an odpcgraph. The minimum cardinality of such a set M , if it exists, is said to the open distance pattern coloring number (odpc-number, in short) of G, denoted by $\eta_{M}(G)$.
It has been proved, in [6], that for any graph G $\eta_{M}(G) \geq 2$. Further, the following theorem has been proved in [6].

Theorem 1.2. [6] Every connected bipartite graphs are open distance pattern colorable.
In this paper, we study open distance pattern coloring of certain classes of graphs.
2 Main Results:
The graph obtained by identifying the end points of b internally disjoint paths, each of length a, is denoted, in [4], by $P_{a, b}$. The following proposition establishes the open distance pattern colorability of this graph class.

Proposition 2.1 $P_{a, b}$ is open distance pattern colorable.
Proof. Let the end points of b internally disjoint paths of length a are identified at u and v, Hence, any cycle in the graph $P_{a, b}$ is of length 2a. That is, the length of any cycle in $P_{a, b}$ is even and hence it is a bipartite graph. Therefore, by Theorem 1.2, is o $P_{a, b}$ open distance pattern colorable.

Theorem 2.2. The graph G isomorphic to n cycles C_{m} all of which have one edge in common is odpc if and only if $m \geq 4$
..Proof. Let $V(G)=\left\{u_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right\}$
be the vertex set of G, where $u_{i_{j}}$ is the vertex set of the ithcopy of C_{m}
Assume that $\dddot{m} \geq 4$. Then, we have the following cases.
Case 1: m even. G is bipartite. By theorem 1.2, G is odpc.
Case 2 : m odd. Choose $M=\left\{u, u_{r\lceil m / 2\rceil}, u_{s\lceil m / 2\rceil}\right\}$. Then $f_{M}{ }^{o}(u)=\{[m / 2]\}, \quad f_{M}{ }^{o}(v)=\{1,\lfloor m / 2\}]$. Also
$f_{M}{ }^{o}\left(u_{r\lceil m / 2\rceil}\right)=f_{M}{ }^{o}\left(u_{s\lceil m / 2\rceil}\right)=\{m-1,\lfloor m / 2\rfloor\}$.

For $i=r, s ; f_{M}{ }^{o}\left(u_{i j}\right)=\{j-1,\lceil m / 2\rceil+j-2,\lceil m / 2\rceil,-j\}$ for $j=2,3,4, \ldots,\lceil m / 2\rceil-1$ and,
$f_{M}{ }^{o}\left(u_{i j}\right)=\{m-(j-1), j-\lceil m / 2\rceil,\lceil m / 2\rceil+m-(j+1)\}$
for $j=\lceil m / 2\rceil+1, \ldots, m-1$.
For $i \neq r \quad$ and $i \neq s$,
$f_{M}{ }^{o}\left(u_{i j}\right)=\{j-1,\lceil m / 2\rceil+j-2\}$ for $\quad j=\{2,3, \ldots,\lceil m / 2\rceil\}$ and
$f_{M}{ }^{o}\left(u_{i j}\right)=\{m-j+1,\lceil m / 2\rceil+m-j-1\}$
for $j=\lceil m / 2\rceil+1, \ldots, m-1$.
From all the above cases, it is evident that no two adjacent vertices of G have the same $f_{M}{ }^{o}$.. Hence, G is open distance pattern colorable.
Conversely, assume that G is open distance pattern colorable. If possible, let $\mathrm{m}=3$
Then $G \cong K_{2}+K_{n} \quad$ Let $V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}$. $V(K n)=\left\{v_{3}, v_{4}, \ldots, v_{n}, v_{n+1}, v_{n+2}\right\}$
$. V\left(K_{n}\right)=\left\{v_{a}, v_{4}, \ldots, v_{n+1}, v_{n+2}\right\}$.
If we choose any number of vertices of G to M, $f_{M}{ }^{o}\left(v_{1}\right)=f_{M}{ }^{o}\left(v_{2}\right)=\{1\}$.
Therefore, G is not open distance pattern colorable. This completes the proof.
Figure 1 depicts odpc labeling of 4 copies of C_{6} which have one edge in common. The vertices in M are represented by white circles in the figure.

Another interesting graph structure is the path union of a given graph G, which is defined as follows.

Definition 2.3. [12] Let G1, G2,G3,...,Gn be n copies of a given graph G. The graph obtained by adding an edge from Gi to
$\mathrm{Gi}+1$ for all $\mathrm{i}=1,2,3, \ldots, \mathrm{n}-1$ is called the path union of G.
We now proceed to verify the open distance pattern colorability of the path union of G in the following theorem.

Theorem 2.4. Let G be the path union of m copies ($m \geq 2$) of cycle Cn. Then, G is open pattern distance colorable except when m is even and $n=3$.

Proof. Let G be the path-union of m copies of the cycle C_{n}.Consider the following cases.

Case 1: \mathbf{n} even. Then, G can be considered as the union of even cycles and hence is a bipartite graph. Therefore, by Theorem $1.2, \mathrm{G}$ is open distance pattern colorable.
Case 2: \mathbf{n} odd. Here we have the following subcases.
Subcase 2.1: modd.
Choose the set $M=\left\{v_{12}, v_{22}, \ldots, v_{m 2}\right\}$. For $i=1,2,3, \ldots,[m / 2]$,
$f_{M^{o}}^{o}{ }_{o}^{o}\left(v_{i 1}\right)=f_{M}{ }^{o}\left(v_{m-(i-1) 1}\right)=\{1,2,3, \ldots, m-(i-1)\}$, $\left.f_{M}{ }^{o}\left(v_{\lceil m / 2\rceil 1}\right)=\{1,2,3, \ldots, \mid m / 2\rceil\right\}$
For the vertex $v_{i 2}$, there are two adjacent vertices at distance diameter of the cycle. These two vertices have identical element $m / 2 \mid$ in their $f_{M}{ }^{\circ}$. By considering distance from these two vertices to other elements in M, they differ by 1 . Hence adjacent vertices have distinct.$f_{M}{ }^{o}$.

Subcase 2.2: m is even and $n=3$. Assume that $n=3$. No vertices of the form $v_{i 1}$ can not be an element of M, since if it is so, the vertices $v_{i 2}, v_{i 3}$ have $f_{M}{ }^{o}\left(v_{i 2}\right)=f_{M}{ }^{o}\left(v_{i 3}\right)$ for any i. If we take any number of vertices of the form $v_{i j}, j \neq 1$, then the vertices $v_{m / 1}$ and $v_{((m / 2+1) 1}$ have the same distance pattern. Therefore, $G_{\text {is }}^{1}$ not open ${ }^{2}$ distance pattern colorable if $n=3$.
Subcase 2.3: m is even and $\mathrm{n} \geq 5$. In this case, choose $M=\left\{v_{11}, v_{1\lceil n / 2\rceil}, v_{22}, v_{31}, v_{3\lceil n / 2\rceil}, \ldots, v_{(m-1) 1}, v_{(m-1)\lceil n / 2\rceil}, v_{m 2}\right\}$ Then, for $i=1,2,3, \ldots, m$
(a) If i is odd, then 2 is an element of $f_{M}{ }^{o}\left(v_{i 1}\right)$, but 1 is not in $f_{M}{ }^{o}\left(v_{i 1}\right)$. .Moreover, two vertices $v_{i j}$ are equidistant from $v_{i 1}$ and distance of these vertices from other elements in M differ by 1 . Hence adjacent vertices have distinct $f_{M}{ }^{\circ}$.
(b) If i is even, then 1 is an element of $f_{M}{ }^{o}\left(v_{i \vdash}\right)$,but 2 is not in $f_{M}{ }^{o}\left(v_{i 1}\right)$.Moreover, $v_{i j}$ for $j=n / 2, n / 2+1$ are equidistant from $v_{i 1}$ and distance of these vertices from other elements in M differ by $\mathbf{1}$. Hence adjacent vertices have distinct $f_{M}{ }^{\circ}$. This completes the proof.

Definition 2.5. [12] A triangular snake, denoted by $S_{3 n}$ is the graph obtained from a path P_{n} by replacing every edge of it by a cycle C_{3}.
Theorem 2.6. A triangular snake $S_{3 n}$ is open distance pattern colorable if $n \neq 3$.
Proof. Let $P_{n}: u_{0} u_{1} u_{2} \ldots u_{n}$. For $0 \leq i \leq n-1$ the triangular snake $S_{3 n}$ is the graph obtained by replacing every edge of P_{n} by the triangle $u_{i} u_{i+1} v_{i+1} u_{i}$. We prove the theorem in IJSER © 2015
http://www.ijser.org
three cases.
Case 1: When $n=2$
Choose $\quad M=\left\{u_{0}, u_{2}\right\}$. Then $f_{M}^{0}\left(u_{1}\right)=\{1\}$
$f_{M}{ }^{o}\left(u_{0}\right)=f_{M}{ }^{o}\left(u_{2}\right)=\{2\}$ and $f_{M}^{0}\left(v_{1}\right)=f_{M}^{0}\left(v_{2}\right)=\{1,2\}$.
Case :2 When $n \geq 4$. For the choice of $M=\left\{u_{0}, u_{2}, u_{n}\right\}$, we have $\quad f_{M}^{0}\left(u_{0}\right)=\{2, d(G)\}, \quad f_{M}^{0}\left(u_{1}\right)=\{1, d(G)-1\}, \quad$ and $f_{M}^{0}\left(v_{1}\right)=\left\{1_{2} d(G)\right\}, \quad f_{M}^{0}\left(v_{2}\right)=\{1,2, d(G)-1\}, \quad$ and for
$3 \leq 1 \leq n$,
$f_{M}^{0}\left(u_{i}\right)=\{i, i-2, n-i\}, f_{M}^{0}\left(v_{i}\right)=\{i, i-2, n-(i-1)\}$. With this choice of $M, S_{3 n} n \neq 3$ is odpc.

Case 3: If possible let $n=3, S_{a 3}$ is odpc. Label the vertices as shown in Figure 2.

If neither u_{0} nor u_{1} is in M, then $f_{M}^{0}\left(u_{0}\right)=f_{M}^{0}\left(u_{1}\right)$. Hence, either u_{0} or u_{1} must be an element of M. By the same argument we see that either u_{5} or u_{6} belongs to M. Now, let u_{0} and u_{6} are in M. Then $f_{M}^{0}\left(u_{2}\right)=f_{M}^{0}\left(u_{4}\right)=\{1,2\}$ irrespective of the case whether u_{2}, u_{3} are in M or not. Since u_{2} is at distance 1 from u_{0} and u_{1}, at distance 2 from u_{5} and u_{6} and u_{4} is at a distance 1 from u_{5} and u_{6} and at distance 2 from u_{0} and $u_{1} f_{M}^{0}\left(u_{2}\right)=f_{M}^{0}\left(u_{4}\right)=\{1,2\}$ in all possible cases. Hence $S_{\text {an }}$ $n \neq 3$ is not odpc.

Analogous to triangular snake, a quadrilateral snake is defined as follows;
Definition 2.7. A quadrilateral snake, denoted by $S_{4 n}$ is the graph obtained from a path P_{n} by replacing every edge of it by a cycle C_{4}.
Theorem 2.8. A quadrilateral snake is open distance pattern colorable.
Proof. A quadrilateral snake is a graph that has only cycles of of length 4 and hence is bipartite. Therefore, by Theorem 1.2, G is open distance pattern colorable.

Another interesting graph we consider is a chain graph which is defined as follows.

Definition 2.9. [1] A chain graph is a graph with blocks $B_{1}, B_{2}, B_{3}, \ldots, B_{n}$ such that for every i, B_{i} and B_{i+1} have a common vertex in such a way that the block cut point is a path.

Definition 2.10. [15] A chain graph with n blocks and the sequence of n blocks of complete graphs $\left(K_{a 1}\right),\left(K_{a 2}\right), \ldots,\left(K_{a n}\right)$ is called a Husimi Chain and is denoted by $C K\left(n ;\left(a_{1}, a_{2}, a_{2}, a_{n}\right)\right) ; a_{i} \geq 2$.
If $a_{1}=a_{2}=a_{3}=\cdots=a_{n}=2$, then $C K(n ;(2,2,2, \ldots, 2))=P_{n}$, a path of length $n \geq 3$ and if $a_{1}=a_{2}=a_{2}=\cdots=a_{n}=3$, then $C K(n ;(3,3, \ldots, 3))=S_{3 n}$ a triangular snake with $n \neq 3$. In both cases, G is odpc, by Theorem 1.2 and Theorem 2.6
respectively. It is meaningless to say that P_{n} has an open distance pattern colorable for $n \leq 2$ and we have already proved in Theorem 2.6 that $S_{2 n}$ not odpc if $n=3$. It remains to verify the other cases.
Theorem 2.11. $G=C K\left(n ;\left(a_{1}, a_{2}, a_{2} \ldots, a_{n}\right)\right)$ is not an odpcgraph if $a_{i} \geq 4$ for some $i ; 1 \leq i \leq n$.
Proof. For some $i ; 1 \leq i \leq n$ assume that $a_{i} \geq 4$. Let $u_{1}, u_{2}, u_{a}, \ldots, u_{a i}$ be the vertices of the component $K_{a i}$. We consider the following cases.
Case 1: If $K_{a i}$ is an end component of G, then exactly one vertex of $K_{a i}$ is common to another component $K_{a i}$ of G. Without loss of generality, let u_{1} be the vertex of $K_{a i}$ that is common to the component $K_{a i}$. Then, there are the following subcases.
Subcase 1.1: When $u_{2}, u_{\mathrm{a}, \ldots,}, u_{\text {ai }}$ are not the elements of M.
In this case, for some positive integer k, let $\left\{i_{1}, i_{2}, i_{3} \ldots, i_{k}\right\}$ be the set assignment f_{M}^{0} of u_{1} with respect to M. If $u_{1} \notin M$, for all $2 \leq r \leq a i, \quad f_{M}{ }^{o}\left(u_{r}\right)=\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}$
That is, the adjacent vertices u_{r} have the same set assignment for all $2 \leq r \leq a_{i}$. Hence if there exists an odpc set for the graph G, then necessarily $u_{1} \in M$. Then, for positive integer t, let $f_{M}^{0}\left(u_{1}\right) \quad=\left\{i_{1}, i_{2}, i_{3} \ldots, i_{t}\right\}$. Therefore $f_{M}^{0}\left(u_{r}\right)$ $=\left\{i_{1}+1, i_{2}+1, i_{3\}}+1, \ldots, i_{t}+1\right\} ; 2 \leq r \leq a i$.

Subcase 1.2: When one of $u_{2}, u_{3} \ldots, u_{\text {ai }}$ is in $M_{\text {. }}$ In this case $u_{1} \notin$ M. Without loss of generality, let $u_{2} \in M . f_{M}{ }^{o} \quad\left(u_{2}\right)$ $=\left\{i_{1}, i_{2}, i_{g \ldots,} i_{s}\right\}$ for some positive integer s. Then $f_{M}^{0}\left(u_{r}\right)$ $=\left\{1, i_{1}, i_{2}, i_{3} \ldots, i_{g}\right\}$
Case2: If $K_{a i}$ is internal component of G and let $K_{a 1}$ $K_{a 2}, K_{a z}, \ldots, K_{a i}$ be the left Husimi chain and $K_{a i}, K_{a i+1}, \ldots, K_{a n}$ be the right Husimichain of $C K\left(n ;\left(\left(a_{1}, a_{2}, a_{2} \ldots, a_{n}\right)\right)\right.$. We can adopt the process, same as in case 1 , for both the chains.
For $1 \leq l \leq a_{i}$, let u_{l} be a vertex of $K_{a i}$, which is not common to any other component of G. If $f_{M}^{0}\left(u_{i}\right)=\left\{i_{1}, i_{2}, i_{3, \ldots}, i_{r}\right\}$ $u_{1} \in K_{a i}$ with respect to odpc set M_{1}, in left Husimi chain and if $f_{M}^{0}\left(u_{i}\right)=\left\{j_{1}, j_{2}, j_{a} \ldots, j_{s}\right\} ; u_{i} \in K_{a i}$ with respect to the odpc set M_{2}, in the right Husimi chain. Then, $f_{M}^{\circ}\left(u_{i}\right)$ with respect to the set $\mathrm{M}=M_{1} \cup M_{2}=\left\{i_{1}, i_{2}, i_{a} \ldots, i_{F}\right\} \cup\left\{j_{1}, j_{2}, j_{2} \ldots, j_{s}\right\}$. In all these cases M cannot be an odpc-set.

Acknowledgement

The first author is indebted to the University Grants Commission (UGC) for granting her Teacher Fellowship under UGC's faculty development programme under XI plan.

References

[1] C. Barrientos, "Graceful labelings of chain corona graphs",

ISSN 2229-5518
[2] J Bondy and U S R Murty, "Graph Theory with Applications", NorthHolland, Amsterdam 1978. .
[3] S. Fiorini and R.J. Wilson, "Edge-Colorings of Graphs", In Selected Topics in Graph Theory, (Eds.:L W Beineke and R J Wilson), Academic Press,Inc., London, 103-126, 1978.
[4] K Kathiresan, "Two Classes of Graceful Graphs", Ars Combin, 55,129-132, 2000.
[5] K A Germina. "Set-valuations of Graphs and Applications", Project Completion Report, DST Grant-In-Aid.Project No.SR/S4/277/05, The Department of Science \& Technology (DST), Govt. of India, 2011.
[6] K A Germina and Marykutty P T, "Open Distance Pattern Coloring of a graph", (2012). ISPACS J. Fuzzy Set Valued Analysis,2012 1-8, DOI:10.5899/2012/jfsva-00144, 2012. (Journal)
[7] K.A. Germina and Marykutty P T," Further Results on Open Distance Pattern Colorable Graphs", Int. J. Math. Sci. \& Applns. 3(1) 153-162, 2013. (Journal)
[8] J L Gross and J Yellen, "Hand book of Graph Theory" manuals CRC Press LLC, New York, 2003.
[9] M C GolumbicAlgorithmic "Graph Theory" and Perfect Graphs, Second Edition, Elsevier, 2004.
[10] F. Harary, "Graph Theory", Addison Wesley Publ. Comp., Reading, Massachusetts 1969.
[11] T. W. Haynes and S T Hedetniemi, and P J Slater, "Domination in Graphs": Advanced Topics, Marcel Dekker, New York,1998.
[12] J A Gallian, "A Dynamic Survey of Graph Labeling", Fourteenth edition, 2011 .

[^0]: Department of Mathematics, Nirmalagiri College, Nirmalagiri, Kannur670701, India. email:marybino63@gmail.com.
 ** Department of Mathematics, Mary Matha Arts and Science College Mananthavdy, Kerarala,
 India. email:srgerminaka@gmail.com

