Open Distance Pattern Coloring of Certain Classes of Graphs

P T Marykutty K A Germina

Abstract—Let *G* be a connected graph with diameter d(G), $X = \{1,2,3,...,d(G)\}$ be a non-empty set of colors of cardinality d(G), and let $\phi \neq M \subseteq V(G)$. Let f_M° be an assignment of subsets of X to the vertices of G such that $f_M^{\circ}(u) = \{d(u,v), v \in M, u \neq v\}$, where d(u,v) is the distance between u and v. We call f_M° an M-open distance pattern coloring of G if no two adjacent vertices have same f_M° and if such an M exists for a graph G, then G is called an open distance pattern colorable (odpc) graph; the minimum cardinality of such an M if it exists, is the open distance pattern coloring of G denoted by $\eta_M(G)$. In this paper, we study open distance pattern coloring of certain classes of graphs.

Index Terms – distance pattern coloring, open distance pattern of vertices, coloring, bipartite graphs, chain graphs, triangular snake, quadrilateral snake,

Mathematics Subject Classification: 05CXX

1 INTRODUCTION

¬ or all terms and definitions, not defined specifically in this Γ paper, we refer to [10] and for more about graph labeling, we refer to [12]. Unless mentioned otherwise, all graphs considered here are simple, finite and connected. Let G be a (p,q)graph and let X, Y and Z be non-empty sets and 2^{X} , 2^{Y} and 2^{Z} be their power sets. Then, the functions $f: V(G) \rightarrow 2^{X}$ and $f: E(G) \to 2^{Y}$ $f V G \to E G \to 2^{Z}$ are called the set assignments of vertices, edges and elements of G respectively. By a set-assignment of a graph, we mean any one of them. A set-assignment $f: V(G) \rightarrow 2^X$ is called a setlabeling or a set-valuation if it is injective. A proper coloring of a graph G is a function from the vertices of G to a set of colors such that no two adjacent vertices have the same color. The chromatic number of a graph G is the minimum number of colors required in its proper coloring. Graph coloring has been used as a model in many practical problems and has played a vital role in the development of graph theory. Using the concepts of graph coloring, distances in graphs and set-labeling of graphs, we defined the following in [7].

India. email:srgerminaka@gmail.com

22.Definition.1.1 [6] Given a connected graph G(V,E) of diameter d(G), $\phi \neq M \subseteq V(G)$. Let, $X = \{1,2,3,...,d(G)\}$ be nonempty set of colors of G with cardinality d(G). Let be $f_M{}^\circ$ an assignment of subsets of X to the vertices of G such that $f_M{}^\circ(u) = \{d(u,v), v \in M, u \neq v\}$, where d(u,v) is the usual distance between u and v. We call $f_M{}^\circ$ an M-open distance pattern coloring of G, if no two adjacent vertices have same $f_M{}^\circ$ and if such an M exists for a graph G, then G is called an *open distance pattern colorable graph*. An open distance pattern colorable graph is usually written in short as an *odpc-graph*. The minimum cardinality of such a set M, if it exists, is said to the *open distance pattern coloring number* (odpc-number, in short) of G, denoted by $\eta_M(G)$.

It has been proved, in [6], that for any graph G $\eta_M(G) \ge 2$. Further, the following theorem has been proved in [6].

Theorem 1.2. [6] Every connected bipartite graphs are open distance pattern colorable.

In this paper, we study open distance pattern coloring of certain classes of graphs.

2 Main Results:

The graph obtained by identifying the end points of *b* internally disjoint paths, each of length *a*, is denoted, in [4], by $P_{a,b}$. The following proposition establishes the open distance pattern colorability of this graph class.

Proposition 2.1 $P_{a,b}$ is open distance pattern colorable.

Proof. Let the end points of b internally disjoint paths of length a are identified at u and v, Hence, any cycle in the graph $P_{a,b}$ is of length 2a. That is, the length of any cycle in $P_{a,b}$ is even and hence it is a bipartite graph. Therefore, by Theorem 1.2, is o $P_{a,b}$ open distance pattern colorable.

Department of Mathematics, Nirmalagiri College, Nirmalagiri, Kannur-670701, India. email:marybino<u>63@gmail.com</u>.

^{**} Department of Mathematics, Mary Matha Arts and Science College Mananthavdy, Kerarala,

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 2229-5518

Theorem 2.2. The graph G isomorphic to n cycles C_m all of which have one edge in common is odpc if and only if $m \ge 4$

... Proof. Let
$$V(G) = \{u_{ii}, 1 \le i \le n, 1 \le j \le m\}$$

be the vertex set of *G*, where u_{ij} is the vertex set of the ith-copy of C_m

Assume that $m \ge 4$. Then, we have the following cases.

Case 1: m even. *G* is bipartite. By theorem 1.2, *G* is odpc.

Case-2: m odd. Choose $M = \{u, u_{r \lceil m/2 \rceil}, u_{s \lceil m/2 \rceil}\}$. Then

$$f_{M}^{o}(u) = \{ \lfloor m/2 \rfloor \} , \qquad f_{M}^{o}(v) = \{ 1, \lfloor m/2 \} \}.$$
 Also
$$f_{M}^{o}(u_{r \lceil m/2 \rceil}) = f_{M}^{o}(u_{s \lceil m/2 \rceil}) = \{ m-1, \lfloor m/2 \rfloor \}.$$

For
$$i = r, s; f_{M}^{o}(u_{ij}) = \{j-1, |m/2| + j-2, |m/2| - j\}$$

for $j = 2,3,4,..., [m/2] - 1$ and ,
 $f_{M}^{o}(u_{ij}) = \{m - (j-1), j - [m/2], [m/2] + m - (j+1)\}$
for $j = [m/2] + 1,..., m - 1$.
For $i \neq r$ and $i \neq s, j$
 $f_{M}^{o}(u_{ij}) = \{i - 1, [m/2] + i - 2\}$ for $i = (2, 2, [m/2])$

$$f_M^{o}(u_{ij}) = \{j-1, \lfloor m/2 \rfloor + j-2\}$$
 for $j=\{2,3,..., \lfloor m/2 \rfloor$
and

$$f_{M}{}^{o}(u_{ij}) = \{m - j + 1, \lceil m/2 \rceil + m - j - 1\}$$

for $j = \lceil m/2 \rceil + 1, ..., m - 1.$

From all the above cases, it is evident that no two adjacent vertices of G have the same f_M^{o} . Hence, G is open distance pattern colorable.

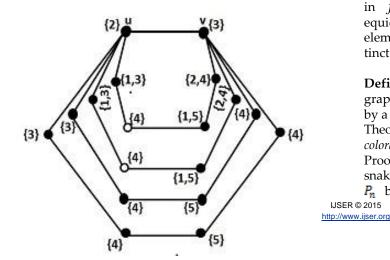
Conversely, assume that *G* is open distance pattern colorable. If possible, let m=3____

Then
$$G \cong K_2 + K_n$$
. Let $V(K_2) = \{v_1, v_2\}$.
 $V(Kn) = \{v_3, v_4, \dots, v_n, v_{n+1}, v_{n+2}\}$
 $V(K_n) = \{v_2, v_4, \dots, v_{n+1}, v_{n+2}\}$.

If we choose any number of vertices of *G* to *M*, $f_M^{o}(v_1) = f_M^{o}(v_2) = \{1\}.$

Therefore, *G* is not open distance pattern colorable. This completes the proof.

Figure 1 depicts odpc labeling of 4 copies of C_6 which have one edge in common. The vertices in M are represented by white circles in the figure.



Another interesting graph structure is the path union of a given graph G, which is defined as follows.

Definition 2.3. [12] Let *G1,G2,G3 ,...,Gn* be *n* copies of a given graph *G*. The graph obtained by adding an edge from Gi to

Gi+1 for all i=1,2,3,...,n-1 is called the path union of *G*. We now proceed to verify the open distance pattern colorability of the path union of *G* in the following theorem.

Theorem 2.4. Let G be the path union of m copies $(m \ge 2)$ of cycle Cn. Then, G is open pattern distance colorable except when m is even and n = 3.

Proof. Let G be the path-union of *m* copies of the cycle C_n . Consider the following cases.

Case 1: n even. Then, *G* can be considered as the union of even cycles and hence is a bipartite graph. Therefore, by Theorem 1.2, *G* is open distance pattern colorable.

Case 2: n odd. Here we have the following subcases. **Subcase 2.1:** m odd.

Choose the set
$$M = \{v_{12}, v_{22}, ..., v_{m2}\}$$
. For
 $i = 1, 2, 3, ..., \lfloor m/2 \rfloor$,
 $f_{M_{o}^{o}}(v_{i1}) = f_{M_{o}^{o}}(v_{m-(i-1)1}) = \{1, 2, 3, ..., m - (i-1)\},$
 $f_{M_{o}^{o}}(v_{\lceil m/2 \rceil 1}) = \{1, 2, 3, ..., \lceil m/2 \rceil\}.$

For the vertex v_{i2} , there are two adjacent vertices at distance diameter of the cycle. These two vertices have identical element $\lfloor m/2 \rfloor$ in their f_M^{o} . By considering distance from these two vertices to other elements in M, they differ by 1. Hence adjacent vertices have distinct . f_M^{o} .

Subcase 2.2: *m* is even and *n* = 3. Assume that *n* = 3. No vertices of the form v_{i1} can not be an element of *M*, since if it is so, the vertices v_{i2}, v_{i3} have $f_M^{o}(v_{i2}) = f_M^{o}(v_{i3})$ for any *i*. If we take any number of vertices of the form $v_{ij}, j \neq 1$, then the vertices $v_{m/1}$ and $v_{((m/2)+1)1}$ have the same distance pattern. Therefore, *G* is not open distance pattern colorable if *n* = 3.

Subcase 2.3: *m* is even and $n \ge 5$. In this case, choose

$$M = \{v_{11}, v_{1\lceil n/2 \rceil}, v_{22}, v_{31}, v_{3\lceil n/2 \rceil}, \dots, v_{(m-1)1}, v_{(m-1)\lceil n/2 \rceil}, v_{m2}\}$$

Then for $i = 1, 2, 3$, m

Then, for i = 1, 2, 3, ..., m

(a) If i is odd, then 2 is an element of $f_M^{o}(v_{i1})$, but 1 is not in $f_M^{o}(v_{i1})$. Moreover, two vertices v_{ij} are equidistant from v_{i1} and distance of these vertices from other elements in M differ by 1. Hence adjacent vertices have distinct f_M^{o} .

differ by **1**. Hence adjacent vertices have distinct f_M^{o} . (b) If *i* is even, then 1 is an element of $f_M^{o}(v_{i1})$, but 2 is not in $f_M^{o}(v_{i1})$. Moreover, v_{ij} for $j = \lfloor n/2 \rfloor, \lfloor n/2 \rfloor + 1$ are equidistant from v_{i1} and distance of these vertices from other elements in M differ by **1**. Hence adjacent vertices have distinct f_M^{o} . This completes the proof.

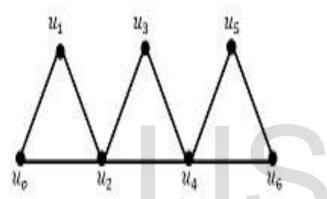
Definition 2.5. [12] A triangular snake, denoted by S_{3n} is the graph obtained from a path P_n by replacing every edge of it by a cycle C_3 .

Theorem 2.6. A triangular snake S_{3n} is open distance pattern colorable if $n \neq 3$.

Proof. Let $P_n : u_0 u_1 u_2 ... u_n$. For $0 \le i \le n-1$ the triangular snake S_{3n} is the graph obtained by replacing every edge of P_n by the triangle $u_i u_{i+1} v_{i+1} u_i$. We prove the theorem in USER © 2015

three cases. Case 1: When n = 2 $M = \{u_0, u_2\}.$ Then $f_{M}^{o}(u_{1}) = \{1\}$ Choose $f_M^{o}(u_0) = f_M^{o}(u_2) = \{2\} \text{ and } f_M^{o}(v_1) = f_M^{o}(v_2) = \{1,2\}.$ Case :2 When $n \ge 4$. For the choice of $M = \{u_0, u_2, u_n\}$, we have $f_M^o(u_0) = \{2, d(G)\}, \quad f_M^o(u_1) = \{1, d(G) - 1\},\$ and $f_M^o(v_1) = \{1, d(G)\},\$ $f_M^o(v_2) = \{1, 2, d(G) - 1\},\$ and for $3 \le i \le n$, $f_M^o(u_i) = \{i, i-2, n-i\}, f_M^o(v_i) = \{i, i-2, n-(i-1)\}.$ With this choice of *M*, $S_{3,n}$, $n \neq 3$ is odpc.

Case 3: If possible let n = 3, S_{33} is odpc. Label the vertices as shown in Figure 2.



If neither u_0 nor u_1 is in M, then $f_M^o(u_0) = f_M^o(u_1)$. Hence, either u_0 or u_1 must be an element of M. By the same argument we see that either u_5 or u_6 belongs to M. Now, let u_0 and u_6 are in M. Then $f_M^o(u_2) = f_M^o(u_4) = \{1,2\}$ irrespective of the case whether u_2 , u_3 are in M or not. Since u_2 is at distance 1 from u_0 and u_1 , at distance 2 from u_5 and u_6 , and u_4 is at a distance 1 from u_5 and $u_{6'}$ and at distance 2 from u_0 and $u_1 f_M^o(u_2) = f_M^o(u_4) = \{1,2\}$ in all possible cases. Hence $S_{2,n}$ $n \neq 3$ is not odpc.

Analogous to triangular snake, a quadrilateral snake is defined as follows;

Definition 2.7. A quadrilateral snake, denoted by $S_{4,n}$ is the graph obtained from a path P_n by replacing every edge of it by a cycle C_4 .

Theorem 2.8. A quadrilateral snake is open distance pattern colorable.

Proof. A quadrilateral snake is a graph that has only cycles of of length 4 and hence is bipartite. Therefore, by Theorem 1.2, G is open distance pattern colorable.

Another interesting graph we consider is a chain graph which is defined as follows.

Definition 2.9. [1] A chain graph is a graph with blocks $B_1, B_2, B_3, ..., B_n$ such that for every *i*, B_i and B_{i+1} have a common vertex in such a way that the block cut point is a path.

Definition 2.10. [15] A chain graph with *n* blocks and the sequence of *n* blocks of complete graphs $(K_{a1}), (K_{a2}), ..., (K_{an})$ is called a Husimi Chain and is denoted by $CK(n; (a_1, a_2, a_2, ..., a_n)); a_i \ge 2$.

If $a_1 = a_2 = a_3 = \cdots = a_n = 2$, then $CK(n; (2, 2, 2, ..., 2)) = P_n$, , a path of length $n \ge 3$ and if $a_1 = a_2 = a_3 = \cdots = a_n = 3$, then $CK(n; (3, 3, ..., 3)) = S_{3n}$ a triangular snake with $n \ne 3$. In both cases, *G* is odpc, by Theorem 1.2 and Theorem 2.6

respectively. It is meaningless to say that P_n has an open distance pattern colorable for $n \leq 2$ and we have already proved in Theorem 2.6 that $S_{2,n}$ not odpc if n = 3. It remains to verify the other cases.

Theorem 2.11. $G = CK(n; (a_1, a_2, a_3, ..., a_n))$ is not an odpcgraph if $a_i \ge 4$ for some $i; 1 \le i \le n$.

Proof. For some i; $1 \le i \le n$ assume that $a_i \ge 4$. Let $u_1, u_2, u_3, ..., u_{ai}$ be the vertices of the component K_{ai} . We consider the following cases.

Case 1: If K_{ai} is an end component of *G*, then exactly one vertex of K_{ai} is common to another component K_{ai} of *G*. Without loss of generality, let u_1 be the vertex of K_{ai} that is common to the component K_{ai} . Then, there are the following subcases.

Subcase 1.1: When u_2, u_3, \dots, u_{ai} are not the elements of *M*.

In this case, for some positive integer *k*, let $\{i_1, i_2, i_3, ..., i_k\}$ be the set assignment f_M^o of u_1 with respect to *M*. If $u_1 \notin M$, for all $2 \leq r \leq ai$, $f_M^{o}(u_r) = \{i_1 + 1, i_2 + 1, ..., i_k + 1\}$

That is , the adjacent vertices u_r have the same set assignment for all $2 \leq r \leq a_i$. Hence if there exists an odpc set for the graph G, then necessarily $u_1 \in M$. Then, for positive integer t, let $\begin{array}{c}f_M^o(u_1) = \{i_1, i_2, i_2, ..., i_t\}. \\ = \{i_1 + 1, i_2 + 1, i_3\} + 1, ..., i_t + 1\}; 2 \leq r \leq ai$.

Subcase 1.2: When one of u_2, u_3, \dots, u_{ai} is in M. In this case $u_1 \notin M$. Without loss of generality, let $u_2 \in M$. $f_M^{o}(u_2) = \{i_1, i_2, i_3, \dots, i_s\}$ for some positive integer s. Then $f_M^{o}(u_r) = \{1, i_1, i_2, i_3, \dots, i_s\}$

Case2: If K_{ai} is internal component of **G** and let K_{a1} . K_{a2} , K_{a3} , ..., K_{ai} be the left Husimi chain and K_{ai} , K_{ai+1} , ..., K_{an} be the right Husimichain of $CK(n; (a_1, a_2, a_3, ..., a_n))$. We can adopt the process, same as in case 1, for both the chains.

For $1 \le l \le a_i$, let u_l be a vertex of K_{ai} , which is not common to any other component of G. If $f_M^o(u_l) = \{i_1, i_2, i_2, ..., i_r\}$; $u_l \in K_{ai}$ with respect to odpc set M_1 , in left Husimi chain and if $f_M^o(u_l) = \{j_1, j_2, j_3, ..., j_s\}$; $u_l \in K_{ai}$ with respect to the odpc set M_2 , in the right Husimi chain. Then, $f_M^o(u_l)$ with respect to the set $M = M_1 \cup M_2 = \{i_1, i_2, i_2, ..., i_r\} \cup \{j_1, j_2, j_2, ..., j_s\}$. In all these cases M cannot be an odpc-set.

Acknowledgement

The first author is indebted to the University Grants Commission (UGC) for granting her Teacher Fellowship under UGC's faculty development programme under XI plan.

References

[1] C. Barrientos, "Graceful labelings of chain corona graphs",

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 2229-5518

[2] J Bondy and U S R Murty, "Graph Theory with Applications", NorthHolland, Amsterdam 1978. .

[3] S. Fiorini and R.J. Wilson, "Edge-Colorings of Graphs", *In Selected Topics in Graph Theory*, (Eds.:L W Beineke and R J Wilson), Academic Press, Inc., London, 103-126, 1978.

[4] K Kathiresan, "Two Classes of Graceful Graphs", Ars Combin, 55,129-132, 2000.

[5] K A Germina. "Set-valuations of Graphs and Applications", *Project Completion Report*, DST Grant-In-Aid.Project No.SR/S4/277/05, The Department of Science & Technology (DST), Govt. of India, 2011.

[6] K A Germina and Marykutty P T, "Open Distance Pattern Coloring of a graph", (2012). ISPACS J. *Fuzzy Set Valued Analysis*,2012 1-8, DOI:10.5899/2012/jfsva-00144, 2012. (Journal)

[7] K.A. Germina and Marykutty P T," Further Results on Open Distance Pattern Colorable Graphs", *Int. J. Math. Sci. & Applns.* 3(1) 153-162, 2013. (Journal)

[8] J L Gross and J Yellen, "Hand book of Graph Theory" *manuals* CRC Press LLC, New York, 2003.

[9] M C GolumbicAlgorithmic "Graph Theory" and *Perfect Graphs*, Second Edition, Elsevier , 2004.

[10] F. Harary, "Graph Theory", Addison Wesley Publ. Comp., Reading, Massachusetts 1969.

[11] T. W. Haynes and S T Hedetniemi, and P J Slater, "Domination in Graphs": Advanced Topics, Marcel Dekker, New York,1998.

[12] J A Gallian, "A Dynamic Survey of Graph Labeling", Four-teenth edition, 2011 .

